Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-17, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189346

RESUMO

Flavonoids are significant dietary components and have ability to coordinate with metal ions to produce novel drug discovery leads that are superior to those of the parent flavonoids. Here, in this report, we have synthesized chrysin-Cu(II) complex (as per reported article) and characterized it further with different analytical techniques. The synthesized complex was evaluated for radical scavenging and cell cytotoxicity studies where it exhibited enhanced activity as compared to bare chrysin. The interaction studies of the complex with ct-DNA (Kb ⁓ 105 M-1), human serum albumin (HSA) and ovalbumin (Kb ⁓ 104 M-1) were evaluated using multi-spectroscopic and molecular docking studies. Groove binding mode with ct-DNA was observed as confirmed from competitive displacement studies, viscosity measurement, melting temperature estimation and docking analyses. The complex exhibited comparatively higher affinity towards ct-DNA which indicated it efficient transportation by the carrier proteins and controlled release in the target DNA.Communicated by Ramaswamy H. Sarma.

2.
Langmuir ; 40(2): 1381-1398, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38159065

RESUMO

In order to better understand the bioavailability and biocompatibility of polyphenol-assisted surface-modified bioengineered nanoparticles in nanomedicine applications, here, we address a series of photophysical experiments to quantify the binding affinity of serum albumin toward polyphenol-capped gold nanoparticles. For this, two different gold nanoparticles (AuNPs) were synthesized via the green synthesis approach, where curcumin and turmeric extract act as reducing as well as capping agents. The size, surface charge, and surface plasmon bands of the AuNPs were highly affected by the adsorption of human serum albumin (HSA) during protein corona formation, which was investigated using dynamic light scattering (DLS), ξ-potential, ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM) measurements. Fluorescence-based methods, absorbance, and SERS experiments were carried out to evaluate the binding aspects of AuNPs with HSA. We found that the AuNPs show moderate binding affinity toward HSA (Kb ∼ 104 M-1), irrespective of the capping agents on the surface. Hydrophobic association, along with some contribution of electrostatic interaction, played a key role in the binding process. The binding interaction was more toward the subdomain IIA region of HSA, as indicated by the competitive displacement studies using site-specific binders (warfarin and flufenamic acid). Because of the large surface curvature of small-sized AuNPs, the secondary structural conformations of HSA were slightly altered, as revealed by circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, and surface-enhanced Raman scattering (SERS) measurements. Additionally, the findings of the binding interactions were re-evaluated using molecular dynamics (MD) simulation studies by determining the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), and changes in the binding energy of HSA upon complexation with AuNPs. To determine the tentative evidence for pharmacokinetic administration, these biocompatible AuNPs were applied to inhibit the amyloid fibril formation of HSA and monitored by using the thioflavin T (ThT) assay, ANS fluorescence assay, fluorescence microscopic imaging, and FESEM. AuNPs were found to show better resistance toward fibrillation of the adsorbed protein.


Assuntos
Curcumina , Nanopartículas Metálicas , Coroa de Proteína , Humanos , Albumina Sérica Humana , Ouro/química , Espectroscopia de Infravermelho com Transformada de Fourier , Curcuma , Nanopartículas Metálicas/química , Dicroísmo Circular , Termodinâmica , Polifenóis , Ligação Proteica , Espectrometria de Fluorescência , Sítios de Ligação
3.
J Mater Chem B ; 11(9): 1998-2015, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752685

RESUMO

Biocompatible quantum dots (QDs) have attracted a lot of attention due to their potential biological applications (drug delivery, sensing and diagnosis). Here, we have synthesized 2-4 nm sized biocompatible zinc sulphide (ZnS) QDs using a plant leaf extract as an immobilizing and stabilizing agent via a green route. We have investigated the biological effects of ZnS QDs in a variety of applications, including (1) anti-bacterial activity, (2) cell cytotoxicity, (3) bio-sensing and (4) protein binding. Studies on the anti-bacterial activity of the as-synthesized ZnS QDs against E. coli and E. faecalis inhibited bacterial growth effectively and showed a cytotoxic effect on the HeLa cell line. The biosynthesized ZnS QDs act as a fluorescence probe to detect bilirubin and rifampicin (RFP) with a wide linear range, high sensitivity, good selectivity, and a low limit of detection (LOD), with LOD values of 22.12 ± 0.25 ng mL-1 and 122.37 ± 0.42 ng mL-1, respectively. In a biological matrix, the QDs can form a complex with biomacromolecules; therefore, we studied the interaction between a carrier protein (HSA) and the as-synthesized ZnS QDs. The surface functionalized and nano-sized ZnS-GT QDs were observed to form complexes with the human serum albumin (HSA) protein and quenched the intrinsic fluorescence of HSA through static and dynamic quenching modes. The binding affinity was observed to be of the order of 105 M-1 for the HSA-ZnS-GT QD interactions, which can be considered as a reversible mode of binding. The effect of the ZnS QDs on other ligands and protein interactions was also studied. Enhanced binding affinities for HSA-quercetin ((5.994 ± 0.139) × 105 M-1) and HSA-luteolin ((3.068 ± 0.127) × 105 M-1) interactions were also observed in the presence of ZnS-GT QDs.


Assuntos
Pontos Quânticos , Humanos , Pontos Quânticos/química , Ligação Proteica , Células HeLa , Escherichia coli/metabolismo , Antioxidantes/metabolismo , Chá
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122540, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36848856

RESUMO

Biosynthesized noble metal nanoparticles have been of recent interest due to their broad implications in the future biomedicinal field. We have synthesized silver nanoparticle using turmeric-extract and its major component curcumin as reducing and stabilizing agents. Further, we have investigated the protein-NPs interaction focusing the inspection of the role of biosynthesized AgNPs on any conformational changes of the protein, binding and thermodynamic parameters using spectroscopic techniques. Fluorescence quenching studies revealed that both CUR-AgNPs and TUR-AgNPs have moderate binding affinities (∼104 M-1) towards human serum albumin (HSA) and static quenching mechanism was involved in the binding. Estimated thermodynamic parameters indicate the involvement of hydrophobic forces in the binding processes. The surface charge potential of the biosynthesized AgNPs became more negative upon complexation with HSA as observed from Zeta potential measurements. Antibacterial efficacies of the biosynthesized AgNPs were evaluated against Escherichia coli (gram-negative) and Enterococcus faecalis (gram-positive) bacterial strains. The AgNPs were found to destroy the cancer (HeLa) cell lines in vitro. The overall findings of our study successfully outline the detailed insight of the protein corona formation by biocompatible AgNPs and their biological applications concerning the future scope in the biomedicinal field.


Assuntos
Curcumina , Nanopartículas Metálicas , Coroa de Proteína , Humanos , Albumina Sérica Humana , Nanopartículas Metálicas/química , Curcumina/farmacologia , Prata/química , Curcuma , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/metabolismo , Células HeLa , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana
5.
Luminescence ; 37(12): 2105-2122, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271635

RESUMO

Ovalbumin (OVA), the major component of egg white, has been used as a model carrier protein to study the interaction of four bioactive phytochemicals 6-hydroxyflavone, chrysin, naringin, and naringenin. A static quenching mechanism was primarily associated with the complexation of the flavonoids with OVA. Hydrophobic forces play a major part in the stability of the complexes. The structural changes within the protein in response to flavonoid binding revealed a decrease in OVA's α-helical content. The hypothesized binding site for flavonoids in OVA overlaps with one or more immunoglobulin E-binding epitopes that may have some effect in the immunoglobulin E response pathway. The flavonoids remain in the same binding site throughout the simulation time and impart protein stability by forming different noncovalent interactions. This study presents comprehensive information about the interaction of the flavonoids with OVA and the associated structural variations after the binding, which might help researchers better comprehend similar medication pharmacodynamics and provide critical information for future therapeutic development.


Assuntos
Hipersensibilidade a Ovo , Clara de Ovo , Humanos , Ovalbumina/química , Ovalbumina/metabolismo , Imunoglobulina E/química , Imunoglobulina E/metabolismo , Alérgenos/química , Ligação Proteica , Simulação de Acoplamento Molecular
6.
Food Res Int ; 157: 111358, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761621

RESUMO

Human serum albumin (HSA) being the most prevalent protein in the plasma is extremely vulnerable to glycation. Two flavonoids naringin and naringenin were tested for their effects on the glyoxal and ribose-induced glycation, advanced glycation end products (AGEs) and fibril formation of HSA. The inhibition of the formation of AGEs in the presence of both flavonoids demonstrated their antiglycating properties. The presence of fibrillar aggregates in the glyoxal and ribose modified HSA were also decreased by naringin and naringenin. The explanation for naringenin's stronger antiglycating potential than naringin was further investigated by examining their interactions with HSA. H-bonding and other non-covalent interactions with flavonoids stabilize HSA. Interactions of lysine and arginine residues with flavonoids may prevent the residues from getting modified during glycation process. Naringenin bind to both subdomains IIA and IIIA of HSA, protecting more residues than naringin, which only binds to subdomain IIA, may describe the higher inhibitory activity of naringenin.


Assuntos
Citrus , Glioxal , Citrus/metabolismo , Flavanonas , Flavonoides/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glioxal/química , Humanos , Compostos Fitoquímicos , Ribose , Albumina Sérica Humana/química
7.
Luminescence ; 37(5): 837-853, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35297173

RESUMO

The synthesis of small-sized quantum dots (QDs) (1-10 nm) via the green route has garnered great interest regarding their prospective use in many biological applications (diagnosis, drug delivery and in vivo sensing); this is difficult to achieve using chemical synthesis methods, which produce larger size QD particles and also require hazardous reagents. Here, we synthesized biogenic cadmium sulphide (CdS) QDs using green tea extract as the reducing agent to produce particles that were homogeneous and a smaller size of 2-4 nm. We also elucidated the (a) protein binding, (b) antibacterial use and (c) sensing applications of biogenic CdS QDs in this present work. The biosynthesized CdS QDs were found to have extensive antibacterial activity against both Gram-negative Escherichia coli and Gram-positive Enterococcus faecalis bacterial strains. The introduction of QDs in biological medium can lead to the formation of protein-QD complexes; therefore we investigated the binding interaction of CdS QDs with the carrier protein human serum albumin (HSA) in vitro. The synthesized CdS QDs quenched the intrinsic fluorescence of HSA through a static quenching mechanism and the binding constant (Kb ) was in the order of 104 M-1 . It was also observed that the presence of biogenic CdS QDs affected the HSA-ligand interactions in vitro. The synthesized CdS made highly effective sensors for tetracycline, rifampicin, and bilirubin with limit of detection (LOD) values of 99, 141 and 29 ng/ml, respectively.


Assuntos
Pontos Quânticos , Antibacterianos/farmacologia , Compostos de Cádmio , Humanos , Estudos Prospectivos , Pontos Quânticos/química , Albumina Sérica Humana , Sulfetos/química
8.
Biologia (Bratisl) ; 77(4): 1121-1134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034970

RESUMO

The novel coronavirus disease (COVID-19) has spread throughout the globe, affecting millions of people. The World Health Organization (WHO) has declared this infectious disease a pandemic. At present, several clinical trials are going on to identify possible drugs for treating this infection. SARS-CoV-2 Mpro is one of the most critical drug targets for the blockage of viral replication. The aim of this study was to identify potential natural anthraquinones that could bind to the active site of SARS-CoV-2 main protease and stop the viral replication. Blind molecular docking studies of 13 anthraquinones and one control drug (Boceprevir) with SARS-CoV-2 Mpro were carried out using the SwissDOCK server, and alterporriol-Q that showed the highest binding affinity towards Mpro were subjected to molecular dynamics simulation studies. This study indicated that several antiviral anthraquinones could prove to be effective inhibitors for SARS-CoV-2 Mpro of COVID-19 as they bind near the active site having the catalytic dyad, HIS41 and CYS145 through non-covalent forces. The anthraquinones showed less inhibitory potential as compared to the FDA-approved drug, boceprevir. Among the anthraquinones studied, alterporriol-Q was found to be the most potent inhibitor of SARS-CoV-2 Mpro. Further, MD simulation studies for Mpro- alterporriol-Q system suggested that alterporriol-Q does not alter the structure of Mpro to a significant extent. Considering the impact of COVID-19, identification of alternate compounds like alterporriol-Q that could inhibit the viral infection will help in accelerating the process of drug discovery. Supplementary Information: The online version contains supplementary material available at 10.1007/s11756-021-01004-4.

9.
J Biomol Struct Dyn ; 40(24): 13872-13888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34751096

RESUMO

Multispectroscopic and computational methods of exploring the interaction between a carrier protein and therapeutic compounds provide a preliminary investigation into establishing the efficacy of such compounds. Here, two coumarin derivatives, 7-hydroxycoumarin (7-HC) and 4-methyl-7-hydroxycoumarin (4-Me-7-HC), were selected to carry out numerous biophysical interaction studies with a model carrier protein, hen egg white lysozyme (HEWL). Fluorescence spectroscopy studies conducted between HEWL and 7-HC/4-Me-7-HC revealed the binding constants (Kb) were in the range of 104 M-1, indicating a moderate nature of binding. The quenching mechanism observed during complexation process was an unusual static quenching due to the effect of temperature on the rate constant. Thermodynamic parameters revealed a positive ΔH and ΔS for HEWL-7-HC/4-Me-7-HC, indicating hydrophobic forces played a dominant role in the interaction process. FRET studies suggested a possible non-radiative energy transfer from the donor (HEWL) to the acceptor (coumarins). Molecular docking studies revealed the interaction of 7-HC/4-Me-7-HC with intrinsic fluorophores, Trp63 and Trp108, Trp108 being an essential residue for binding as proven by molecular dynamic (MD) simulation. MD simulation studies also indicated conformational stability gained by HEWL upon interaction with 7-HC and 4-Me-7-HC. The microenvironment surrounding the Trp residues showed a significant Stoke's shift on carrying out 3-D fluorescence. CD studies revealed a decrease in the alpha helical content of HEWL upon interacting with the ligands. Enzymatic assay conducted for HEWL in the presence of 7-HC/4-Me-7-HC saw an increase in the activity of HEWL, suggesting a change in structural conformation and stability of the protein, altering its activity.Communicated by Ramaswamy H. Sarma.


Assuntos
Cumarínicos , Muramidase , Simulação de Acoplamento Molecular , Muramidase/química , Clara de Ovo , Termodinâmica , Proteínas de Transporte/metabolismo , Umbeliferonas , Ligação Proteica
10.
J Pharm Anal ; 11(4): 422-434, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34513118

RESUMO

Green synthesis of silver nanoparticles (AgNPs) has garnered tremendous interest as conventional methods include the use and production of toxic chemicals, products, by-products and reagents. In this regard, the synthesis of AgNPs using green tea (GT) extract and two of its components, (-)-epigallocatechin gallate (EGCG) and (+)-catechin (Ct) as capping/stabilizing agents, is reported. The synthesized AgNPs showed antibacterial activity against the bacterial strains Staphylococcus aureus and Escherichia coli, along with anticancer activity against HeLa cells. After administering nanoparticles to the body, they come in contact with proteins and results in the formation of a protein corona; hence we studied the interactions of these biocompatible AgNPs with hen egg white lysozyme (HEWL) as a carrier protein. Static quenching mechanism was accountable for the quenching of HEWL fluorescence by the AgNPs. The binding constant (K b) was found to be higher for EGCG-AgNPs ((2.309 ± 0.018) × 104 M-1) than for GT-AgNPs and Ct-AgNPs towards HEWL. EGCG-AgNPs increased the polarity near the binding site while Ct-AgNPs caused the opposite effect, but GT-AgNPs had no such observable effects. Circular dichroism studies indicated that the AgNPs had no such appreciable impact on the secondary structure of HEWL. The key findings of this research included the synthesis of AgNPs using GT extract and its constituent polyphenols, and showed significant antibacterial, anticancer and protein-binding properties. The -OH groups of the polyphenols drive the in situ capping/stabilization of the AgNPs during synthesis, which might offer new opportunities having implications for nanomedicine and nanodiagnostics.

11.
J Biomol Struct Dyn ; 39(5): 1811-1818, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32131700

RESUMO

Different post-translational changes in eye lens crystallin proteins contribute towards the development of cataract. We have studied in vitro oxidative modification of tryptophan (Trp) residues of human γD-crystallin (HGD) towards formation of N-formylkynurenine (NFK) associated with cataractogenesis. This oxidation was found to be inhibited by quercetin at relatively low concentration. Interactions between quercetin and HGD were further studied using fluorescence techniques. Binding and quenching constants were determined as ∼104 M-1. Static quenching of fluorescence due to HGD-quercetin complex formation at ground state was confirmed by finding excited state life time of Trp residues. Energy transfer occurred between the protein and quercetin. Hydrogen bonding and/or van der Waals interactions were involved between HGD and quercetin. Synchronous and three-dimensional fluorescence along with far-UV CD studies suggested no major conformational alterations occurred in HGD due to quercetin binding. Experimental observations were supported by the docking results.Communicated by Ramaswamy H. Sarma.


Assuntos
Quercetina , Triptofano , Transferência de Energia , Humanos , Oxirredução , Espectrometria de Fluorescência , Triptofano/metabolismo
12.
J Biomol Struct Dyn ; 39(2): 476-492, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31900044

RESUMO

The non-enzymatic glycation of plasma proteins by reducing sugars have important consequences on the conformational and functional properties of protein. The formation of advanced glycation end products (AGEs) is responsible for cell death and other pathological conditions. We have synthesized the glycated human serum albumin (gHSA) and characterized the same by using differential spectroscopic measurements. The aim of the present study is to determine the effect of glycation on the binding of human serum albumin (HSA) with bioactive flavonoid chrysin, which possesses anti-cancer, anti-inflammatory and anti-oxidant activities. The interaction of chrysin with HSA and gHSA was studied using multi-spectroscopic, molecular docking and molecular dynamics (MD) simulation techniques. Chrysin quenched the intrinsic fluorescence of both HSA and gHSA by static quenching mechanism. The value of the binding constant (Kb) for the interaction of HSA-chrysin complex (4.779 ± 0.623 × 105 M-1 at 300 K) was found to be higher than that of gHSA-chrysin complex (2.206 ± 0.234 × 105 M-1 at 300 K). Hence, non-enzymatic glycation of HSA significantly reduced its binding affinity towards chrysin. The % α-helicity of HSA was found to get enhanced upon binding with chrysin, and minimal changes were observed for the gHSA-chrysin complex. Site marker probe studies indicated that chrysin binds to subdomain IIA and IIIA of both HSA and gHSA. The results from molecular docking and MD simulation studies correlated well with the experimental findings. Electrostatic interactions followed by hydrogen bonding and hydrophobic interactions played major roles in the binding process. These observations may have some useful insights into the field of pharmaceutics.


Assuntos
Flavonoides , Albumina Sérica Humana , Sítios de Ligação , Dicroísmo Circular , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência , Termodinâmica
13.
J Biomol Struct Dyn ; 39(9): 3347-3357, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32362245

RESUMO

A new strain of a novel infectious disease affecting millions of people, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently been declared as a pandemic by the World Health Organization (WHO). Currently, several clinical trials are underway to identify specific drugs for the treatment of this novel virus. The inhibition of the SARS-CoV-2 main protease is necessary for the blockage of the viral replication. Here, in this study, we have utilized a blind molecular docking approach to identify the possible inhibitors of the SARS-CoV-2 main protease, by screening a total of 33 molecules which includes natural products, anti-virals, anti-fungals, anti-nematodes and anti-protozoals. All the studied molecules could bind to the active site of the SARS-CoV-2 protease (PDB: 6Y84), out of which rutin (a natural compound) has the highest inhibitor efficiency among the 33 molecules studied, followed by ritonavir (control drug), emetine (anti-protozoal), hesperidin (a natural compound), lopinavir (control drug) and indinavir (anti-viral drug). All the molecules, studied out here could bind near the crucial catalytic residues, HIS41 and CYS145 of the main protease, and the molecules were surrounded by other active site residues like MET49, GLY143, HIS163, HIS164, GLU166, PRO168, and GLN189. As this study is based on molecular docking, hence being particular about the results obtained, requires extensive wet-lab experimentation and clinical trials under in vitro as well as in vivo conditions.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia
14.
J Photochem Photobiol B ; 205: 111825, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32142995

RESUMO

In recent years research based on kaempferol (KMP) has shown its potential therapeutic applications in medicinal chemistry and clinical biology. Therefore, to understand its molecular recognition mechanism, we studied its interactions with the carrier proteins, namely, human serum albumin (HSA), bovine hemoglobin (BHb) and hen egg white lysozyme (HEWL). The ligand, KMP was able to quench the intrinsic fluorescence of these three proteins efficiently through static quenching mode. The binding constant (Kb) for the interactions of KMP with these three proteins were found in the following order: HSA-KMP > BHb-KMP > HEWL-KMP. Different non-covalent forces such as hydrogen bonding and hydrophobic forces played a major role in the binding of KMP with HSA and HEWL, whereas hydrogen bonding and van der Waals forces contribute to the complexation of BHb with KMP. KMP was able to alter the micro-environment near the Trp fluorophore of the proteins. KMP altered the secondary structural component of all three proteins. The putative binding sites and the residues surrounding the KMP molecule within the respective protein matrix were determined through molecular docking and molecular dynamics (MD) simulation studies. The conformational flexibility of the ligand KMP and the three individual proteins were also evident from the MD simulation studies.


Assuntos
Hemoglobinas/química , Quempferóis/química , Muramidase/química , Albumina Sérica Humana/química , Dicroísmo Circular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
15.
Phys Chem Chem Phys ; 22(4): 2212-2228, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31913367

RESUMO

In this work, the interaction of a bioactive tea polyphenol (-)-epigallocatechin gallate (EGCG) with bovine hemoglobin (BHb) along with its anti-oxidative behavior and the anti-glycation property have been explored using multi-spectroscopic and computational techniques. The binding affinity for EGCG towards BHb was observed to be moderate in nature with an order of 104 M-1, and the fluorescence quenching mechanism was characterized by an unusual static quenching mechanism. The binding constant (Kb) showed a continuous enhancement with temperature from 3.468 ± 0.380 × 104 M-1 at 288 K to 6.017 ± 0.601 × 104 M-1 at 310 K. The fluorescence emission measurements along with molecular docking studies indicated that EGCG binds near the most dominant fluorophore of BHb (ß2-Trp37, at the interface of α1 and ß2 chains) within the pocket formed by the α1, α2 and ß2 chains. The sign and magnitude of the thermodynamic parameters, changes in enthalpy (ΔH = +17.004 ± 1.007 kJ mol-1) and in entropy (ΔS = +146.213 ± 2.390 J K-1 mol-1), indicate that hydrophobic forces play a major role in stabilizing the BHb-EGCG complex. The micro-environment around the EGCG binding site showed an increase in hydrophobicity upon ligand binding. The binding of EGCG with BHb leads to a decrease in the α-helical content, whereas that of the ß-sheet increased. FTIR studies also indicated that the secondary structure of BHb changed upon binding with EGCG, along with providing further support for the presence of hydrophobic forces in the complexation process. Molecular docking studies indicated that EGCG binds within the cavity of α1, α2, and ß2 chains surrounded by residues such as α1- Lys99, α1-Thr134, α1-Thr137, α1-Tyr140, α2-Lys127 and ß2-Trp37. Molecular dynamics simulation studies indicated that EGCG conferred additional stability to BHb. Furthermore, moving away from the binding studies, EGCG was found to prevent the glyoxal (GO)-mediated glycation process of BHb, and it was also found to act as a potent antioxidant against the photo-oxidative damage of BHb.


Assuntos
Catequina/análogos & derivados , Hemoglobinas/química , Hemoglobinas/metabolismo , Polifenóis/metabolismo , Animais , Catequina/química , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Polifenóis/química , Ligação Proteica , Análise Espectral
16.
Phys Chem Chem Phys ; 21(23): 12649-12666, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31157335

RESUMO

In the proposed work, the complexation of bioactive flavonoid luteolin with hen egg white lysozyme (HEWL) along with its inhibitory influence on HEWL modification has been explored with the help of multi-spectroscopic and computational methods. The binding affinity has been observed to be moderate in nature (in the order of 104 M-1) and the static quenching mechanism was found to be involved in the fluorescence quenching process. The binding constant (Kb) shows a progressive increase with the increase in temperature from (4.075 ± 0.046 × 104 M-1) at 293 K to (6.962 ± 0.024 × 104 M-1) at 313 K under experimental conditions. Spectroscopic measurements along with molecular docking calculations suggest that Trp62 is involved in the binding site of luteolin within the geometry of HEWL. The positive changes in enthalpy (ΔH = +19.99 ± 0.65 kJ mol-1) as well as entropy (ΔS = +156.28 ± 2.00 J K-1 mol-1) are indicative of the presence of hydrophobic forces that stabilize the HEWL-luteolin complex. The micro-environment around the Trp residues showed an increase in hydrophobicity as indicated by synchronous fluorescence (SFS), three dimensional fluorescence (3D) and red edge excitation (REES) studies. The % α-helix of HEWL showed a marked reduction upon binding with luteolin as indicated by circular dichroism (CD) and Fourier-transform infrared spectroscopy (FTIR) studies. Moreover, luteolin is situated at a distance of 4.275 ± 0.004 nm from the binding site as indicated by FRET theory, and the rate of energy transfer kET (0.063 ± 0.004 ns-1) has been observed to be faster than the donor decay rate (1/τD = 0.606 ns-1), which is indicative of the non-radiative energy transfer during complexation. Leaving aside the binding study, luteolin showed promising inhibitory effects towards the d-ribose mediated glycation of HEWL as well as towards HEWL fibrillation as studied by fluorescence emission and imaging studies. Excellent correlation with the experimental observations as well as precise location and dynamics of luteolin within the binding site has been obtained from molecular docking and molecular dynamics simulation studies.


Assuntos
Luteolina/química , Luteolina/farmacologia , Muramidase/química , Muramidase/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Galinhas , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Estrutura Molecular , Termodinâmica
17.
J Biomol Struct Dyn ; 37(15): 4019-4034, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30314416

RESUMO

The interaction of 6-hydroxyflavone (6HF) with hen egg white lysozyme (HEWL) has been executed using multi-spectroscopic and computational methods. Steady state fluorescence studies indicated that static quenching mechanism is involved in the binding of 6HF with HEWL, which was further supported by excited state lifetime and UV-vis absorption studies. The binding constant (Kb) of the HEWL-6HF complex was observed to be 6.44 ± 0.09 × 104 M-1 at 293 K, which decreases with the increase in temperature. The calculation of the thermodynamic quantities showed that the binding is exothermic in nature with a negative enthalpy change (ΔH = -11.91 ± 1.02 kJ mol-1) along with a positive entropy change (ΔS = +51.36 ± 2.43 J K-1 mol-1), and the major forces responsible for the binding are hydrogen bonding and hydrophobic interactions. The possibility of energy transfer from tryptophan (Trp) residue to the 6HF ligand was observed from Fo¨rster's theory. The inclusion of 6HF within the binding site of HEWL induces some micro-environmental changes around the Trp residues as indicated by synchronous and three-dimensional (3D) fluorescence studies. The changes in secondary structural components of HEWL are observed on binding with 6HF along with a reduction in % α-helical content. Computational studies correlate well with the experimental finding, and the ligand 6HF is found to bind near to Trp 62 and Trp 63 residues of HEWL. Altogether, the present study provides an insight into the interaction dynamics and energetics of the binding of 6HF to HEWL. Communicated by Ramaswamy H. Sarma.


Assuntos
Flavonoides/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Muramidase/química , Algoritmos , Ativação Enzimática , Modelos Teóricos , Conformação Molecular , Muramidase/metabolismo , Análise Espectral , Relação Estrutura-Atividade , Termodinâmica
18.
Phys Chem Chem Phys ; 20(33): 21668-21684, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30101248

RESUMO

The binding of two bio-active flavonoids, quercetin and rutin, with bovine hemoglobin (BHb) was investigated by multi-spectroscopic and computational (molecular docking and molecular dynamics simulation) studies. The two flavonoids were found to quench the intrinsic fluorescence of BHb through a static quenching mechanism. The binding constants at 288 K were observed to be (14.023 ± 0.73) × 104 M-1 and (7.848 ± 0.20) × 104 M-1, respectively for quercetin and rutin binding with BHb. Both rutin and quercetin were observed to increase the polarity around the Trp residues of BHb as indicated by synchronous and 3D spectral studies. No significant alterations in the secondary structural components of the protein were caused during the binding of the flavonoids as studied by CD and FTIR studies. The negative molar Gibbs free energies indicated the spontaneity of the interaction processes while the binding processes were characterized by a negative enthalpy change (ΔH) and a positive entropy change (ΔS). The possibility of energy transfer from the donor (BHb) to the acceptor molecules (flavonoids) was indicated by the FRET studies. According to the fluorescence studies, the flavonoids interact near to the ß2-Trp37 residue of BHb. Excellent correlations with the experimental studies were observed from the molecular docking and molecular dynamics (MD) simulation studies. Further investigations established that these flavonoids are efficient in the inhibition of glucose mediated glycation of BHb.


Assuntos
Hemoglobinas/metabolismo , Quercetina/metabolismo , Rutina/metabolismo , Animais , Sítios de Ligação , Bovinos , Dicroísmo Circular , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Hemoglobinas/química , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Quercetina/química , Rutina/química , Espectrometria de Fluorescência , Termodinâmica , Triptofano/química
19.
J Photochem Photobiol B ; 180: 25-38, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29413699

RESUMO

The interactions of bio-active flavonoids, 7-hydroxyflavone (7HF) and 3-hydroxyflavone (3HF) with hen egg white lysozyme (HEWL) have been established using differential spectroscopic techniques along with the help of molecular docking method. The characteristic dual fluorescence of 3HF due to the excited intramolecular state proton transfer (ESIPT) process is altered markedly upon binding with HEWL. Both the flavonoids quenched the intrinsic fluorescence of HEWL through static quenching mechanism while the binding affinity of 7HF was found to be greater than 3HF under experimental conditions. The binding constant (Kb) values were estimated to be in the order of 104 M-1 and decreased with the rise in temperature. The contributions of the thermodynamic parameters (ΔH° and ΔS°) revealed that hydrophobic forces along with hydrogen bonding played a crucial role in the interaction of HEWL with 7HF and 3HF respectively and this finding was aptly supported by the molecular docking studies. The donor (HEWL) to acceptors (7HF and 3HF) binding distances were calculated using the Föster's theory. The phenomena of blue shifting of the emission maxima of the residues indicated the increase in hydrophobicity around the Trp micro-environment upon addition of the flavonoids was observed from synchronous and 3D fluorescence measurements whereas REES study indicated the decrease in mobility of the Trp residues upon addition of the ligands. The CD, FTIR and thermal melting studies indicated the alteration in the structural stability of HEWL on ligand binding and it was found that the % α-helical content decreased on complexation with 7HF and 3HF respectively as compared to native state. The flavonoids were found to inhibit the enzymatic activity of HEWL. The molecular docking results and accessible surface area (ASA) calculations revealed that the flavonoids bind within the active site of HEWL. The negative ΔG° values obtained from experimental and molecular docking studies indicate the spontaneity of the interaction processes.


Assuntos
Flavonoides/metabolismo , Muramidase/metabolismo , Animais , Sítios de Ligação , Galinhas , Dicroísmo Circular , Flavonoides/química , Transferência Ressonante de Energia de Fluorescência , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Muramidase/química , Ligação Proteica , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 192: 211-221, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29145059

RESUMO

The interactions of naringenin (NG) and naringin (NR) with Hen Egg White Lysozyme (HEWL) in aqueous medium have been investigated using UV-vis spectroscopy, steady-state fluorescence, circular dichroism (CD), Fourier Transform infrared spectroscopy (FT-IR) and molecular docking analyses. Both NG and NR can quench the intrinsic fluorescence of HEWL via static quenching mechanism. At 300K, the value of binding constant (Kb) of HEWL-NG complex (5.596±0.063×104M-1) was found to be greater than that of HEWL-NR complex (3.404±0.407×104M-1). The negative ΔG° values in cases of both the complexes specify the spontaneous binding. The binding distance between the donor (HEWL) and acceptor (NG/NR) was estimated using the Försters theory and the possibility of non-radiative energy transfer from HEWL to NG/NR was observed. The presence of metal ions (Ca2+, Cu2+ and Fe2+) decreased the binding affinity of NG/NR towards HEWL. Synchronous fluorescence studies indicate the change in Trp micro-environment due to the incorporation of NG/NR into HEWL. CD and FT-IR studies indicated that the α-helicity of the HEWL was slightly enhanced due to ligand binding. NG and NR inhibited the enzymatic activity of HEWL and exhibited their affinity for the active site of HEWL. Molecular docking studies revealed that both NG and NR bind in the close vicinity of Trp 62 and Trp 63 residues which is vital for the catalytic activity.


Assuntos
Flavanonas/metabolismo , Simulação de Acoplamento Molecular , Muramidase/metabolismo , Animais , Dicroísmo Circular , Flavanonas/química , Íons , Cinética , Muramidase/química , Ligação Proteica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...